Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recently, many experiments have been conducted with the goal of demonstrating a quantum advantage over classical computation. One popular framework for these experiments is Gaussian boson sampling, where quadratic photonic input states are interfered via a linear optical unitary and subsequently measured in the Fock basis. In this paper, we study the modal entanglement of the output states in this framework just before the measurement stage. Specifically, we compute Page curves as measured by various Rényi- entropies, where the Page curve describes the entanglement between two partitioned groups of output modes averaged over all linear optical unitaries. We derive these formulas for (i.e., the von Neumann entropy) and, more generally, for all positive integer , in the asymptotic limit of infinite number of modes and for input states that are composed of single-mode-squeezed-vacuum state with equal squeezing strength. We then analyze the limiting behaviors when the squeezing is small and large. Having determined the averages, we then explicitly calculate the Rényi- variance for integers and are able to show that these entropies are weakly typical. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available May 1, 2026
-
Free, publicly-accessible full text available April 1, 2026
-
Toric -designs, or equivalently -designs on the diagonal subgroup of the unitary group, are sets of points on the torus over which sums reproduce integrals of degree monomials over the full torus. Motivated by the projective structure of quantum mechanics, we develop the notion of -designs on the projective torus, which have a much more restricted structure than their counterparts on full tori. We provide various new constructions of toric and projective toric designs and prove bounds on their size. We draw connections between projective toric designs and a diverse set of mathematical objects, including difference and Sidon sets from the field of additive combinatorics, symmetric, informationally complete positive operator valued measures and complete sets of mutually unbiased bases (MUBs) from quantum information theory, and crystal ball sequences of certain root lattices. Using these connections, we prove bounds on the maximal size of dense sets. We also use projective toric designs to construct families of quantum state designs. In particular, we construct families of (uniformly-weighted) quantum state -designs in dimension of size exactly that do not form complete sets of MUBs, thereby disproving a conjecture concerning the relationship between designs and MUBs (Zhu 2015). We then propose a modification of Zhu's conjecture and discuss potential paths towards proving this conjecture. We prove a fundamental distinction between complete sets of MUBs in prime-power dimensions versus in dimension (and, we conjecture, in all non-prime-power dimensions), the distinction relating to group structure of the corresponding projective toric design. Finally, we discuss many open questions about the properties of these projective toric designs and how they relate to other questions in number theory, geometry, and quantum information.more » « lessFree, publicly-accessible full text available December 3, 2025
-
The problem of optimally measuring an analytic function of unknown local parameters each linearly coupled to a qubit sensor is well understood, with applications ranging from field interpolation to noise characterization. Here we resolve a number of open questions that arise when extending this framework to Mach-Zehnder interferometers and quadrature displacement sensing. In particular, we derive lower bounds on the achievable mean square error in estimating a linear function of either local phase shifts or quadrature displacements. In the case of local phase shifts, these results prove, and somewhat generalize, a conjecture by Proctor []. For quadrature displacements, we extend proofs of lower bounds to the case of arbitrary linear functions. We provide optimal protocols achieving these bounds up to small (multiplicative) constants and describe an algebraic approach to deriving new optimal protocols, possibly subject to additional constraints. Using this approach, we prove necessary conditions for the amount of entanglement needed for any optimal protocol for both local phase and displacement sensing. Published by the American Physical Society2024more » « less
-
We derive a family of optimal protocols, in the sense of saturating the quantum Cramér-Rao bound, for measuring a linear combination of d field amplitudes with quantum sensor networks, a key subprotocol of general quantum sensor network applications. We demonstrate how to select different protocols from this family under various constraints. Focusing primarily on entanglement-based constraints, we prove the surprising result that highly entangled states are not necessary to achieve optimality in many cases. Specifically, we prove necessary and sufficient conditions for the existence of optimal protocols using at most k-partite entanglement. We prove that the protocols which satisfy these conditions use the minimum amount of entanglement possible, even when given access to arbitrary controls and ancillas. Our protocols require some amount of time-dependent control, and we show that a related class of time-independent protocols fail to achieve optimal scaling for generic functions.more » « less
-
By tightening the conventional Lieb-Robinson bounds to better handle systems that lack translation invariance, we determine the extent to which “weak links” suppress operator growth in disordered one dimensional spin chains. In particular, we prove that ballistic growth is impossible when the distribution of coupling strengths μ(J ) has a sufficiently heavy tail at small J and we identify the correct dynamical exponent to use instead. Furthermore, through a detailed analysis of the special case in which the couplings are genuinely random and independent, we find that the standard formulation of Lieb-Robinson bounds is insufficient to capture the complexity of the dynamics—we must distinguish between bounds that hold for all sites of the chain and bounds that hold for a subsequence of sites and we show by explicit example that these two can have dramatically different behaviors. All the same, our result for the dynamical exponent is tight, in that we prove by counterexample that there cannot exist any Lieb-Robinson bound with a smaller exponent. We close by discussing the implications of our results, both major and minor, for numerous applications ranging from quench dynamics to the structure of ground states.more » « less
-
Bosonic Gaussian states are a special class of quantum states in an infinite dimensional Hilbert space that are relevant to universal continuous-variable quantum computation as well as to near-term quantum sampling tasks such as Gaussian Boson Sampling. In this work, we study entanglement within a set of squeezed modes that have been evolved by a random linear optical unitary. We first derive formulas that are asymptotically exact in the number of modes for the Rényi-2 Page curve (the average Rényi-2 entropy of a subsystem of a pure bosonic Gaussian state) and the corresponding Page correction (the average information of the subsystem) in certain squeezing regimes. We then prove various results on the typicality of entanglement as measured by the Rényi-2 entropy by studying its variance. Using the aforementioned results for the Rényi-2 entropy, we upper and lower bound the von Neumann entropy Page curve and prove certain regimes of entanglement typicality as measured by the von Neumann entropy. Our main proofs make use of a symmetry property obeyed by the average and the variance of the entropy that dramatically simplifies the averaging over unitaries. In this light, we propose future research directions where this symmetry might also be exploited. We conclude by discussing potential applications of our results and their generalizations to Gaussian Boson Sampling and to illuminating the relationship between entanglement and computational complexity.more » « less
An official website of the United States government
